@dataknut
)If you wish to refer to any of the material from this report please cite as:
Report circulation:
This work is (c) 2020 the University of Southampton.
I usually do energy demand research but in the absence of access to real time energy demand data on lockdown (unlike during the World Cup), I’m looking at other things.
We use the excellent openair package (Carslaw and Ropkins 2012) to download the AURN data and create the wind and pollution roses for each of the following Southampton sites:
Year and site is given in the legend label.
This analysis uses data for Southampton downloaded from:
The data supplied to AURN by UK monitoring sites such as the ones in Southampton is ratified to check for outliers and instrument/measurement error. However, AURN data less than six months old has not undergone this process. Be warned.
Downloaded from AURN.
sites <- c("SA33", "SOUT")
# use:
# windRose(mydata, type = "year", layout = c(4, 2))
# https://www.rdocumentation.org/packages/openair/versions/2.7-0
# wide form
df_SA33 <- openair::importAURN(
site = "SA33",
year = 2000:2020,
pollutant = "all",
hc = FALSE,
to_narrow = FALSE, # produces wide form data
verbose = TRUE
)
df_SOUT <- openair::importAURN(
site = "SOUT",
year = 2000:2020,
pollutant = "all",
hc = FALSE,
to_narrow = FALSE, # produces wide form data
verbose = TRUE
)
A33 - near docks: map
skimr::skim(df_SA33)
Name | df_SA33 |
Number of rows | 43848 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
factor | 2 |
numeric | 8 |
POSIXct | 1 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
code | 0 | 1 | FALSE | 1 | SA3: 43848 |
site | 0 | 1 | FALSE | 1 | Sou: 43848 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
no | 6983 | 0.84 | 34.68 | 47.40 | -0.31 | 5.07 | 18.08 | 44.99 | 562.00 | ▇▁▁▁▁ |
no2 | 6985 | 0.84 | 37.14 | 25.41 | -2.14 | 17.11 | 32.23 | 51.65 | 182.49 | ▇▅▂▁▁ |
nox | 6983 | 0.84 | 90.31 | 93.37 | 0.20 | 26.17 | 61.72 | 121.17 | 1007.78 | ▇▁▁▁▁ |
pm10 | 13649 | 0.69 | 18.58 | 11.99 | -3.20 | 10.50 | 15.70 | 23.40 | 122.30 | ▇▃▁▁▁ |
nv10 | 14638 | 0.67 | 15.62 | 10.62 | -4.70 | 8.60 | 13.30 | 20.00 | 121.40 | ▇▂▁▁▁ |
v10 | 14641 | 0.67 | 2.73 | 2.91 | -9.60 | 0.90 | 2.40 | 4.20 | 24.90 | ▁▇▂▁▁ |
ws | 11808 | 0.73 | 3.76 | 1.97 | 0.00 | 2.30 | 3.30 | 4.90 | 14.30 | ▇▇▂▁▁ |
wd | 11808 | 0.73 | 202.07 | 104.00 | 0.00 | 118.50 | 229.10 | 282.60 | 360.00 | ▅▃▃▇▆ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2016-01-01 | 2020-12-31 23:00:00 | 2018-07-02 11:30:00 | 43848 |
# make a compass rose for this site for this year
openair::windRose(df_SA33, type = "year", key.header = paste0("Southampton site: ",
s), layout = c(3, 2))
# make a compass rose for this site for this year
openair::pollutionRose(df_SA33, type = "year", key.header = paste0("Southampton site: ",
s), layout = c(3, 2))
City centre: map
skimr::skim(df_SOUT)
Name | df_SOUT |
Number of rows | 184104 |
Number of columns | 17 |
_______________________ | |
Column type frequency: | |
factor | 2 |
numeric | 14 |
POSIXct | 1 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
code | 0 | 1 | FALSE | 1 | SOU: 184104 |
site | 0 | 1 | FALSE | 1 | Sou: 184104 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
co | 85705 | 0.53 | 0.36 | 0.37 | 0.00 | 0.20 | 0.20 | 0.50 | 9.6 | ▇▁▁▁▁ |
pm10 | 24757 | 0.87 | 21.52 | 13.75 | -5.00 | 12.70 | 18.00 | 27.00 | 437.0 | ▇▁▁▁▁ |
no | 23139 | 0.87 | 19.33 | 35.69 | -0.07 | 4.00 | 9.00 | 19.00 | 751.0 | ▇▁▁▁▁ |
no2 | 23139 | 0.87 | 32.74 | 17.96 | 0.00 | 19.00 | 29.12 | 43.22 | 220.0 | ▇▂▁▁▁ |
nox | 23140 | 0.87 | 62.29 | 66.51 | 0.00 | 27.00 | 44.00 | 73.00 | 1272.0 | ▇▁▁▁▁ |
o3 | 20097 | 0.89 | 36.69 | 22.85 | -0.20 | 18.00 | 36.40 | 52.65 | 228.0 | ▇▅▁▁▁ |
so2 | 24278 | 0.87 | 3.49 | 4.44 | -3.13 | 0.86 | 3.00 | 5.00 | 239.0 | ▇▁▁▁▁ |
nv10 | 87729 | 0.52 | 16.16 | 10.56 | -4.10 | 9.40 | 14.00 | 20.00 | 358.0 | ▇▁▁▁▁ |
v10 | 87743 | 0.52 | 3.23 | 3.19 | -10.00 | 1.00 | 2.90 | 4.50 | 30.0 | ▁▇▁▁▁ |
nv2.5 | 100359 | 0.45 | 10.17 | 8.74 | -4.00 | 5.00 | 7.80 | 12.30 | 288.9 | ▇▁▁▁▁ |
pm2.5 | 96628 | 0.48 | 12.86 | 10.81 | -4.90 | 6.40 | 9.80 | 15.50 | 289.2 | ▇▁▁▁▁ |
v2.5 | 100357 | 0.45 | 3.19 | 3.04 | -10.00 | 1.30 | 2.80 | 4.20 | 34.0 | ▁▇▁▁▁ |
ws | 101853 | 0.45 | 4.41 | 2.47 | 0.00 | 2.60 | 3.90 | 5.70 | 21.0 | ▇▆▁▁▁ |
wd | 101853 | 0.45 | 200.73 | 103.34 | 0.00 | 116.70 | 228.20 | 279.50 | 360.0 | ▅▃▃▇▅ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2000-01-01 | 2020-12-31 23:00:00 | 2010-07-02 11:30:00 | 184104 |
# make a compass rose for this site for this year
openair::windRose(df_SOUT, type = "year", key.header = paste0("Southampton site: ",
s), layout = c(3, 2))
# make a compass rose for this site for this year
openair::pollutionRose(df_SOUT, type = "year", key.header = paste0("Southampton site: ",
s), layout = c(3, 2))
Report generated using knitr in RStudio with R version 3.6.3 (2020-02-29) running on x86_64-apple-darwin15.6.0 (Darwin Kernel Version 19.4.0: Wed Mar 4 22:28:40 PST 2020; root:xnu-6153.101.6~15/RELEASE_X86_64).
t <- proc.time() - myParams$startTime
elapsed <- t[[3]]
Analysis completed in 33.748 seconds ( 0.56 minutes).
R packages used:
Carslaw, David C., and Karl Ropkins. 2012. “Openair — an R Package for Air Quality Data Analysis.” Environmental Modelling & Software 27–28 (0): 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008.
Müller, Kirill. 2017. Here: A Simpler Way to Find Your Files. https://CRAN.R-project.org/package=here.